MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer

Article in Gynecologic Oncology · August 2008

CITATIONS
1,012

READS
218

2 authors:

Douglas D Taylor
University of Louisville
127 PUBLICATIONS 4,859 CITATIONS

Cicek Gercel-Taylor
Exosome Sciences
105 PUBLICATIONS 4,310 CITATIONS

All content following this page was uploaded by Douglas D Taylor on 08 March 2017.
The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer

Douglas D. Taylor *, Cicek Gercel-Taylor

Department of Obstetrics, Gynecology, and Women’s Health, University of Louisville School of Medicine, Louisville, KY, USA

Received 21 March 2008

Abstract

Objectives. Most ovarian cancer patients are diagnosed at an advanced stage (67%) and prospects for significant improvement in survival reside in early diagnosis. While expression patterns of a recently identified biomarker family, microRNA, appear to be characteristic of tumor type and developmental origin, microRNA profiling has been limited to tissue specimens. Tumors actively release exosomes into the peripheral circulation and we now demonstrate the association of microRNAs with circulating tumor-derived exosomes.

Methods. Circulating tumor exosomes were isolated using a modified MACS procedure with anti-EpCAM. Initially, microRNA profiles of ovarian tumors were compared to those of tumor exosomes isolated from the same patients. Levels of 8 microRNAs (miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203, miR-205 and miR-214) previously demonstrated as diagnostic, were compared in exosomes isolated from sera specimens of women with benign disease and various stages of ovarian cancer.

Results. MicroRNA from ovarian tumor cells and exosomes from the same patients were positive for 218 of 467 mature microRNAs analyzed. The levels of the 8 specific microRNAs were similar between cellular and exosomal microRNAs (exhibiting correlations from 0.71 to 0.90). While EpCAM-positive exosomes were detectable in both patients with benign ovarian disease and ovarian cancer, exosomal microRNA from ovarian cancer patients exhibited similar profiles, which were significantly distinct from profiles observed in benign disease. Exosomal microRNA could not be detected in normal controls.

Conclusions. These results suggest that microRNA profiling of circulating tumor exosomes could potentially be used as surrogate diagnostic markers for biopsy profiling, extending its utility to screening asymptomatic populations.

© 2008 Elsevier Inc. All rights reserved.

Keywords: MicroRNA; Ovarian cancer; Diagnosis; Screening; Exosomes

Introduction

Despite progress made in the understanding and treatment of ovarian cancer, it remains the sixth most common cancer in women worldwide, causing approximately 125,000 deaths annually [1]. Most women with ovarian cancer are diagnosed at an advanced stage, with 75% diagnosed with extra-ovarian disease [2]. In comparison with other cancers associated with women, 73% of endometrial cancers, 55% of breast cancers and 50% of cervical cancers are diagnosed with Stage I disease [3].

While the 5-year survival of patients with Stage I ovarian cancer exceeds 90%, only 21% of advanced-stage ovarian cancer patients survive 5 years after initial diagnosis [2]. Since long-term survival has not changed significantly in the last two decades, the best prospects for further improvement in ovarian cancer survival reside in early diagnosis [3].

Over the last 5 years, expression profiling technologies have identified new biomarkers with diagnostic applications. One such biomarker group is a class of small noncoding RNAs, termed microRNAs [4–6]. MicroRNAs, small (22–25 nucleotides in length) noncoding RNAs, suppress the translation of target mRNAs by binding to their 3’ untranslated region [7,8]. Post-transcriptional silencing of target genes by microRNA can occur either by cleavage of homologous mRNA or by specific inhibition of protein synthesis. MicroRNAs are critical regulators of cellular
miR-200a and derived exosomes, small (50 to 100 nm) membrane vesicles of endocytic origin, in the peripheral circulation of women with ovarian cancer [13, 14]. Since our original report, other cells have been demonstrated to be capable of releasing exosomes, including reticulocytes, dendritic cells, B cells, T cells, mast cells, epithelial cells, and embryonic cells [15, 16]; however, their accumulation in the peripheral circulation appears to be unique to cancer and pregnancy [17, 18]. While the primary source of circulating exosomes in cancer patients is the tumor, other normal cells within the peripheral circulation can contribute to the level exosome population. Our recent work has focused on the separation of tumor-derived exosomes from those derived from normal lymphoid cells [19, 20]. Utilizing adherence to specific magnetic beads, exosomes of tumor origin can be isolated.

Since exosome functionality appears to be determined by its specific protein content, proteomic analysis has been performed on in vivo and in vitro derived exosomes. Analyses of exosomes have demonstrated that all exosomes share certain common characteristics, including structure (lipid bilayer), size, density and general protein composition. Some proteins are commonly associated with all exosomes, including cytoplasmic proteins (such as tubulin, actin, actin-binding proteins, annexins and Rab proteins), signal transduction proteins, (protein kinases, heterotrimeric G-proteins), MHC class I molecules, and heat-shock proteins (such as Hsp70 and Hsp90) [21–24]. Tetraspanins, including CD9, CD63, CD81 and CD82, are the protein family most commonly associated with exosomes and are generally used as exosome markers [23, 25]. While tumor-derived exosomes exhibit some common, shared proteins, they also express an array of tumor antigens that reflect the originating tumor cells. Although exosome release can be demonstrated in many proliferating cell types, their release is exacerbated in tumor cells, as evidenced by their elevated presence in plasma, ascites and pleural effusions of cancer patients [26, 27]. This elevated presence in serum and ascites fluids of cancer patients and the overexpression of certain biomarkers has lead investigators to propose a role for exosomes in diagnosis and biomarker analysis [28].

Exosomes have been postulated to play an important role in cell–cell communication and appear to affect target cells either by stimulating them directly by surface expressed ligands or by transferring molecules between cells. Ratajczak et al. [29] demonstrated the presence of exosomal RNA and provided evidence for the horizontal transfer of genetic information between cells. The biological effects of these exosomes were inhibited after pretreatment with RNAse, indicating the involvement of RNA components. RNA molecules, following translocation from the nucleus to the cytoplasm, can bind to and be transported by membranous organelles or vesicles to specific intracellular sites, which may provide an explanation for the association of RNA populations with exosomes. Valadi et al. [30] demonstrated that released exosomes contain a subset of both cellular mRNA and microRNA, which could be transferred to target cells. Our preliminary results suggest that microRNA contained in tumor exosomes is functional and can suppress the mRNA for signal transduction components within T cells. Since released exosomes contain RNA populations, including microRNA, it is possible that this exosomal microRNA reflects the microRNA signature of the parental tumor. The objectives of this study were to determine whether the microRNAs contained within ovarian cancer-derived exosomes mirrored that of the tumor and thus could be used diagnostically.
Materials and methods

Patient samples and cell lines

This study utilized sera derived from women diagnosed with serous papillary adenocarcinoma of the ovary \((n=50); n=10\) for Stage I, \(n=10\) for Stage II, \(n=20\) for Stage III and \(n=10\) for Stage IV, age-matched women with benign ovarian adenoma \((n=10)\), and age-matched women with no evidence of ovarian disease \((n=10)\). Controls, patients with benign ovarian disease and Stages III and IV ovarian cancer were selected based on age-matching to patients with early stage ovarian cancer. This study also investigated primary tumor cell cultures, established from 6 women with Stage IIIc cyst adenocarcinoma of the ovary, and their corresponding pre-surgery sera samples. All of these materials were obtained under an informed consent approved by the University Human Studies Committee of the University of Louisville. The primary ovarian tumor cell cultures were established in our laboratory and designated UL-1, UL-2, UL-3, UL-6, UL-B, and UL-O. UL-2 and UL-3 were derived from hereditary ovarian diseases, while UL-1, UL-6, UL-B, and UL-O were derived from spontaneous cancers. These ovarian tumor cells were grown in RPMI 1640 medium supplemented with 10% exosome-free (by ultrafiltration) fetal bovine serum, 100 mg/ml streptomycin and 100 IU/ml penicillin in a humidified 5% CO\(_2\) atmosphere. Cell viability was evaluated by trypan blue exclusion and all cultures utilized were >95% viable.

Isolation of circulating exosomes

Tumor-derived exosomes were specifically isolated by a modified magnetic activated cell sorting (MACS) procedure, using anti-epithelial cell adhesion molecule (EpCAM). Our previous studies have demonstrated that exosomes from epithelial tumors express EpCAM on their surface and can be used for their selective isolation. Serum samples \(2.5\) ml from normal controls, patients with benign disease, and patients with early stage ovarian cancer were incubated with anti-EpCAM coupled to magnetic microbeads \(50\) μl. These were mixed and incubated for 2 h at 4 °C. A LD microcolumn was placed in the magnetic field of a MACS Separator and the column was rinsed with 500 μl Tris-buffered saline (TBS). The magnetic immune complexes were applied onto the column and unbound (unlabeled) material passed through and was discarded. The column was washed four times with 500 μl of TBS. The specifically selected exosomes were recovered by removing the column from the separator and placing it on a collection tube. TBS \(1\) ml was be added to the column and the magnetically labeled exosomes were obtained by applying the plunger supplied with the column. The isolated exosomes/microbeads were diluted in IgG elution buffer (Pierce Chemical Co, Rockford, IL) and the complex was centrifuged at \(10,000 \times g\) to separate the microbeads from the exosomes (supernatant). The supernatant was then centrifuged at 100,000 g for 1 h at 4 °C. The pellet of exosomes were resuspended in 250 μl phosphate-buffered saline (PBS) and these tumor-derived exosomes were assayed for total protein. The quantity of protein was determined by the Bradford microassay method (Bio-Rad Laboratories, Hercules, CA), using bovine serum albumin (BSA) as a standard.

Transmission electron microscopy

For transmission electron microscopy, the pelleted exosomes were fixed in 2.5% (w/v) glutaraldehyde in PBS, dehydrated and embedded in Epon. Ultrathin sections \(65\) nm were cut and stained with uranyl acetate and Reynold’s lead citrate. The sections were examined in a Jeol 1210 transmission electron microscope.

Isolation and profiling of microRNA

Total RNA was isolated from the tumor cells and exosomes using the mirVana microRNA isolation kit according to manufacturer’s instructions (Ambion, Austin, TX). The RNA quality, yield, and size of microRNA fractions were analyzed using Agilent 2100 Bioanalyzer (Agilent Technologies, Foster City, CA). The isolated microRNAs were 3’-end labeled with Cy3 using the mirVana microRNA Array Labeling Kit (Ambion) and the Post Labeling Reactive Dye kit (Amersham Bioscience, Pittsburgh, PA). MicroRNA profiling was performed in duplicate by Ocean Ridge Biosciences (Jupiter, FL) using microarrays containing probes for 467 human mature microRNAs. This analysis used custom-developed microRNA arrays covering the 467 microRNAs present in the Sanger Institute mirBASE v9.0, consisting of 35–44-mer oligonucleotides, manufactured by Invitrogen and spotted in duplicate. After hybridization, the microRNA arrays were scanned using a GenePix 4000A array scanner (Axon Instruments, Union City, CA) and the raw data normalized and analyzed using GeneSpring 7.0 Software (Silicon Genetics, Redwood City, CA). Normalization was performed by expressing each microRNA replicate relative to control microRNA (Ambion) added to each sample, allowing comparisons between arrays. Threshold and 95th percentile of negative controls (TPT95) were calculated based on hybridization signal from negative control probes including; 38 mismatch and shuffled control probes and 87 non-conserved Caenorhabditis elegans probes. To define sensitivity, NCode synthetic microRNA was spiked at 1/500,000 mass ratio into labeling reactions and the signal intensity was detected. For specificity, perfect match probes for mir-93, mir-27a, and mir-152 and 2 mismatches for each were used. The 2 base pair mismatch probes demonstrated a signal below or at TPT95 on all arrays.

To assess the stability of the exosomal profiling with storage and manipulations, sera from patients with ovarian cancer patients were obtained and aliquoted into four \(4\) ml samples. Tumor exosomes were isolated from the first aliquot by the MACS procedure immediately and total RNA was isolated and stored at \(-70\) °C until isolation of all samples. The remaining sera samples were stored at \(-4\) °C for subsequent exosome isolation. Tumor exosomes were isolated from the second aliquot after \(24\) h, from the third aliquot after \(48\) h and from the fourth sample after \(96\) h at \(-4\) °C. RNA was isolated from each exosome preparation and stored. In a similar study, 3 additional serum aliquots were stored at \(-70\) °C for \(7\) to \(28\) days, prior to exosome and RNA isolations to mimic the use of banked specimens.

General statistical considerations

Data were analyzed using the statistical software package, SAS9.1 (SAS Institute, Cary, NC). The levels of circulating exosomes for each group of patients were defined as means ± standard deviations from at least two separate experiments performed in triplicate. Comparisons between these groups were performed by one-way ANOVA, followed by the Tukey’s multiple comparisons post-test comparing each population. Relative quantification of microRNA expression was calculated with the \(2^{-\Delta \Delta Ct}\) method (Applied Biosystems User Bulletin No. 2) and data were analyzed as log10 of relative quantity \((RQ)\) of the target microRNA, normalized with respect to control microRNA added to each sample, allowing comparisons between arrays. The microRNA distributions and correlations along with confidence intervals were calculated for each subset. Statistical significance was set as \(p \leq 0.05\).

Results

Presence of circulating EpCAM-positive exosomes in women with benign and malignant ovarian disease

EpCAM-positive exosomes were specifically isolated using anti-EpCAM magnetic beads and these circulating exosomes were assayed for total protein and plotted versus stage of disease \((\text{Fig. 1A})\). The levels of EpCAM-positive exosomes in age-matched normal volunteers \((\text{control})\) were \(0.039 ± 0.030\) mg/ml of exosomal protein, which represented the background of the assay. Patients diagnosed with benign ovarian disease possessed \(0.149 ± 0.065\) mg/ml of exosomal protein, which was significantly elevated over controls. Patients diagnosed with ovarian cancer all exhibited significantly elevated levels of EpCAM-positive exosomes \((\text{compared to benign disease or controls})\). Women with Stage I ovarian cancer exhibited \(0.320 ± 0.056\) mg/ml of circulating exosomal protein, which was significantly greater than
both controls and benign disease ($p<0.01$). The levels of circulating exosomes increased as the stage progressed, with Stage II cancer having 0.640 ± 0.053 mg/ml, Stage III possessing 0.995 ± 0.084 mg/ml and Stage IV presenting with 1.42 ± 0.228 mg/ml. Levels of exosomes associated with these three stages were significantly greater than women with benign disease or controls ($p<0.001$). The resulting fractions were further analyzed by electron microscopy, which demonstrated vesicular structures characteristic of exosomes (Fig. 1B). The exosomal nature of this material was further confirmed by the presence of tetraspanins, class I antigens, and placental-type alkaline phosphatase by Western immunoblotting (data not shown).

Fig. 1. Panel A: The levels of circulating tumor-derived exosomes compared to stage of ovarian cancer. Exosomes were isolated from sera obtained from age-matched female controls ($n=10$), age-matched women with benign ovarian disease ($n=10$), and women diagnosed with ovarian cancer ($n=10$ for each stage). Levels of exosomes are presented as protein concentrations. Panel B: Electron micrograph of circulating exosomes isolated by magnetic beads. Ultrathin sections (65 nm) were cut and stained with uranyl acetate and Reynold’s lead citrate. The sections were examined in a Jeol 1210 transmission electron microscope.

Fig. 2. Presence of small RNA associated with circulating EpCAM-positive exosomes from ovarian cancer patients. Panel A: Representative analysis of the RNA isolated from tumor exosomes using Agilent 2100 Bioanalyzer. Panel B: Agarose gel (1%) separation of total RNA from circulating exosomes and corresponding tumors. This total RNA was used as the starting material for microRNA profiling.
Association of small RNA with tumor-derived exosomes

To identify whether these isolated exosomes contained small RNAs, they were examined using a Bio-Analyzer 2100 (Fig. 2). This analysis identified the presence of a significant population of small RNA in the absence of 18S and 28S RNA, generally observed with cell-derived RNA. This material was subsequently used for microRNA profiling.

Profiling of exosome-derived versus cell-derived microRNA

The presence and levels of specific microRNAs from both cell-derived and exosome-derived microRNA were determined using microarray analysis probing for 467 microRNAs. The microRNA profiles of our ovarian tumors confirmed the alterations, previously reported [4]. Further, we demonstrated that of the 467 microRNAs, 218 were above the normalized threshold, calculated based on the 95th percentile of the negative control probe signal in both the cells and exosomes (Table 1). Of the 218 positive microRNAs, the levels of 175 were not significantly different between the ovarian tumor cells and their corresponding exosomes. By comparison, 12 were present at a higher proportion in the cells, while 31 were present at elevated levels within exosomes.

Previously, specific microRNAs were demonstrated to be overexpressed in human ovarian cancer (miR-21, miR-141, miR-200a, miR-200b, miR-203, miR-205, and miR-214). To correlate these findings with exosomal-derived material, RNA fractions were isolated from the original tumor cells and circulating tumour exosomes of the same patients (Fig. 3). To compare these associations with the presence of exosomes, previously reported disease across various stages, the mean intensities of exosomal microRNA profiles were performed with advanced-stage patients. To compare the associations of specific microRNAs with the presence of disease among patients with Stages I, II and III were not significantly different for most of these microRNAs (Fig. 4). miR-200c and miR-214 were lower in patients with Stage I, compared to Stages II and III. However, in all cases, these microRNAs were significantly elevated over the levels detected in exosomes derived from benign disease. The small RNA fraction could not be demonstrated in normal controls and attempts to assess the presence of miRNAs were negative.

Further, the levels of tumor-derived microRNA profiles exhibited a strong correlation with the levels of peripheral blood-derived exosomal microRNAs (for miR-21, \(r = 0.77 \); miR-141, \(r = 0.88 \); miR-200a, \(r = 0.76 \); miR-200b, \(r = 0.85 \); miR-200c, \(r = 0.83 \); miR-203, \(r = 0.85 \); miR-205, \(r = 0.91 \); and miR-214, \(r = 0.71 \)).

Exosomal microRNA correlation with presence and stage of disease

Our previous comparisons between tumor and circulating exosomes were performed with advanced-stage patients. To compare the associations of specific microRNAs with the presence of disease across various stages, the mean intensities of exosomal microRNAs were determined. The presence of the 8 diagnostic microRNAs among patients with Stages I, II and III were not significantly different for most of these microRNAs (Fig. 4). miR-200c and miR-214 were lower in patients with Stage I, compared to Stages II and III. However, in all cases, these microRNAs were significantly elevated over the levels detected in exosomes derived from benign disease. The small RNA fraction could not be demonstrated in normal controls and attempts to assess the presence of miRNAs were negative.

Stability of exosomal microRNA profiles

Since the measurement of circulating exosomal microRNA appears to be diagnostic, the technical question of its stability was raised. When the microRNA profiles were performed on serum samples stored over short time periods at 4 °C (up to 96 h) and the intensities compared (Fig. 5A), no significant differences were observed in the 3 diagnostic microRNAs analyzed. When the serum samples were stored at −70 °C for longer time intervals, the

Table 1

<table>
<thead>
<tr>
<th>Elevated in cells</th>
<th>Equal between cells and exosomes</th>
<th>Elevated in exosomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-218, miR-196a, miR-195, miR-15a, miR-519d, miR-382, miR-503, miR-34b, miR-520d, miR-29c, miR-135a, miR-155</td>
<td>miR-296, miR-20a, miR-28, miR-302a, miR-99a, miR-99b, miR-10a, let-7a, let-7b, let-7c, let-7d, let-7f, let-7i, let-7l, let-7p, miR-138, miR-23a, miR-183, miR-25, miR-107, miR-181a, miR-125a, miR-222, miR-198, miR-16, miR-200a, miR-18a, miR-101, miR-136, miR-31, miR-106b, miR-92, miR-342, miR-128a, miR-182, miR-663, miR-502, miR-500, miR-652, miR-424, miR-130a, miR-429, miR-365, miR-29a, miR-550, miR-422a, miR-585, miR-92b, miR-629, miR-671, miR-210, miR-26a, miR-454-5p, miR-769-3p, miR-765, miR-301, miR-191, miR-93, miR-200b, miR-300, miR-324-5p, miR-220, miR-151, miR-186, miR-128b, miR-130b, miR-125b, miR-122a, miR-30d, miR-203, miR-192, miR-133a, miR-126, miR-98, miR-190, miR-137, miR-105, miR-96, miR-519b, miR-29b, miR-453, miR-23b, miR-517c, miR-625, miR-200c, miR-193a, miR-22, miR-224, miR-369-3p, miR-106a, miR-181c, miR-17-5p, miR-19b, miR-24, miR-17-3p, miR-221, miR-335, miR-126, miR-181a, miR-331, miR-188, miR-9, miR-34a, miR-30c, miR-19a, miR-371, miR-10b, miR-21, miR-148a, miR-339, miR-187, miR-346, miR-146a, miR-185, miR-328, miR-196b, miR-129, miR-522, miR-30a-5p, miR-27a, miR-30a-3p, miR-494, miR-20b, miR-521, miR-181b, miR-423, miR-487b, miR-425-3p, miR-594, miR-532, miR-512-3p, miR-526a, miR-578, miR-638, miR-422b, miR-484, miR-486, miR-645, miR-146b, miR-571, miR-647, miR-637, miR-30b, miR-452, miR-361, miR-432, miR-375, miR-766, miR-768-3p, miR-769-5p, miR-513, miR-362, miR-565, miR-30e-3p, miR-320, miR-590, miR-152, miR-181d, miR-660, miR-584, miR-141, miR-18b, miR-582, miR-505, miR-628, miR-425-5p, miR-421, miR-27b, miR-768-5p, miR-454-3p, miR-148b, miR-194, miR-345, miR-26b</td>
<td>miR-214, miR-140, miR-147, miR-135b, miR-205, miR-150, miR-149, miR-370, miR-206, miR-197, miR-634, miR-485-5p, miR-612, miR-608, miR-202, miR-373, miR-324-3p, miR-103, miR-593, miR-574, miR-483, miR-527, miR-603, miR-640, miR-18a, miR-595, miR-193b, miR-642, miR-557, miR-801, let-7c</td>
</tr>
</tbody>
</table>
Intensities of these microRNAs on the microarrays were not significantly different (Fig. 5B). These results indicate that the levels of these exosomal microRNAs were stable and do not significantly change with storage.

Discussion

MicroRNA-expression profiling can be used as diagnostic tools for cancers that currently lack reliable molecular markers, such as ovarian cancer. While previous studies have indicated that microRNA signatures could serve as diagnostic and prognostic markers for ovarian cancer, these data were based on their expression in tissue specimens. Here, we report the association of microRNA with circulating tumor-derived exosomes. In previous studies, microRNAs have been demonstrated to be aberrantly expressed in human ovarian cancers and the overall microRNA expression could differentiate normal versus cancer tissues [4]. The study of Lu et al. [11] demonstrated the use of microRNA signatures as an important advance in cancer diagnosis. Their work indicated that microRNA-based identification of cancers was superior in correctly diagnosing cancer of unknown primaries than mRNA classification. However, it is currently not possible to use microRNA profiling in the absence of a mass to be biopsied.

Our original electron microscopic characterization of exosomes indicated that they were hollow (i.e. absence of viral-like structures) [17]. As a result, our group, together with others, focused on external protein components of exosomes and the biologic consequences of exosome exposure. In the present study, we demonstrate for the first time the presence of small RNA species associated with circulating tumor exosomes (Fig. 2). This small RNA lacks the 18S and 28S associated with RNA from cells. Further, microarray analysis demonstrated that at least part of the small RNA identified is microRNA.
The microRNA-expression profiles of our ovarian tumor cells confirmed the microRNA aberrations reported in previous studies. Analyses of both circulating tumor exosomes and the tumor cells from the same patients demonstrated that both were positive for 46% of the tested microRNAs (218/467). When the intensities of the microRNA were normalized, most of these microRNAs were expressed at similar levels between the cells and exosomes or were elevated within the exosomes (175 were not significantly different and 31 were elevated within exosomes). Thus, the aberrantly expressed microRNAs, used to establish cancer-specific signatures, appear in both cellular and exosomal compartments of ovarian cancer patients.

Our comparison of specific microRNAs, previously demonstrated to be diagnostic, indicated a high degree of correlation between the microRNA from the tumor and its corresponding exosomes (ranging from 0.71 to 0.90). This high correlation even holds for microRNAs that appeared to be present at higher proportions in exosomes, such as for miR-214. The uniform elevation of specific microRNAs in exosomes has lead to the suggestion that compartmentalization of microRNAs into exosomes, for at least some microRNAs, is an active (selective) process. Such a process could be mediated by components, such as nucleolin or nucleophosmin, which are aberrantly expressed on tumor exosomes.

Since these results suggest that exosomal microRNA profiling could be used as a surrogate for tissue microRNA and the goal in screening would be the identification of early stage disease, the ability to detect circulating exosomal microRNAs in early stage disease was examined. The exosomal microRNA expressions of the diagnostic microRNAs between patients with early versus late stage ovarian cancers were not significantly different for most of these microRNAs (Fig. 4). miR-200c and miR-214 were lower in patients with Stage I, compared to Stages II and III; however, in all cases, these microRNAs were significantly elevated over the levels detected in exosomes derived from benign disease. The small RNA fraction could not be demonstrated in normal controls and attempts to assess the presence of microRNAs were negative. Thus, the absence of exosomes and/or exosomal small RNA is associated with normal, non-cancer-bearing individuals and exosomal microRNA mirroring normal tissue microRNA profiles appear to be associated with benign disease. The similarity across the stages of ovarian cancer is likely the result of standardization of starting exosomal small RNA quantities and the normalization of the resulting array data. Despite this standardization and normalization, the profiles obtained with exosomal microRNA from patients with benign disease remained distinct. There are several issues that are not analyzed in this pilot study. Since previous studies examining the microRNA signatures obtained comparing different histologic types of ovarian cancers (serous, endometrioid, clear cell, and mixed) failed to demonstrate differentially expressed microRNAs in terms of tumor stage or grade, our proof of concept study focused on only serous papillary adenocarcinomas and did not address differences in grade. Further, beyond the 8 microRNAs identified by Iorio et al. [4], some microRNAs appear to be differentially expressed between early stage ovarian cancer and late stage disease; however, a larger scale study including additional confounding factors will need to be performed to define their significance. Patients with benign ovarian disease were symptomatic and referred to the division for resection of the ovarian mass. Thus, it is unclear what the profile of women with asymptomatic masses would be. The women constituting the control group, in addition to not having cancer, also have no family history of ovarian or breast cancers; however, the populations mostly to be screened would include such individuals. Thus, it is unclear whether these two “control” populations would be identical. Despite these limitations, these results serve as a proof of concept that the analyses of specific microRNAs associated with circulating exosomes can be applied to all stages of ovarian cancer and that benign and malignant diseases appear distinguishable based on the levels of these 8 specific microRNAs.
The microRNA signatures of exosomes parallel that of the microRNA-expression profiles of the originating tumor cells, indicating that microRNA profiling can be performed in the absence of tissue and accurately reflect the tumor’s profile. We also have observed that tumor-derived exosomes from lung cancer patients contain microRNA that is similar to the corresponding tumor microRNA signatures. Circulating tumor-derived exosomes can be easily isolated using tumor markers, such as EpCAM, followed by analysis of exosome-associated microRNA. Since this approach is non-invasive, in that it does not require a mass to be biopsied, exosomal microRNA profiling has the potential to be used as a screening tool for the detection of cancer. As specific microRNAs associated with tumor tissues are identified that predict prognosis, including therapeutic resistance (such as let-7i, miR-16, miR-21 and miR-214) [31,32], their presence in tumor exosomes can also be assessed to further define the utility of exosomal microRNA profiling as a prognostic indicator. While validation studies will be necessary prior to bypassing the use with tumor mass biopsies, the use of exosomal microRNA profiling could extend this approach to screening of asymptomatic individuals, as well as for monitoring disease recurrence.

Conflicts of interest statement
The authors have no conflicts of interest to declare.

Acknowledgments
We acknowledge the assistance of Dr. Shesh Rai of the Brown Cancer Center of the University of Louisville in the design and statistical analyses of this study and Ms. Leta Weedman, Medical Editor, Department of Obstetrics and Gynecology for the preparation of this manuscript.

Grant/funding support: This work was supported by grants from the National Cancer Institute (CA98166), the Kentucky Science and Technology Corporation and the Kentucky Science and Engineering Foundation (KSEF-1025-RDE008).
Appendix A. Supplementary data

References